Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            When wind-excited tall buildings undergo vibrations beyond their linear elastic range, it becomes imperative to account for both strength and stiffness degradation and P-Delta effects. This study investigates the influence of the degradation and P-Delta effects on the inelastic response of wind-excited tall buildings through a reduced-order building model, wherein the alongwind and crosswind building responses are presumed to be contributed by the fundamental modes. The backbone curves of the hysteretic relationships between the generalized restoring forces and displacements are developed through monotonic static modal pushover analysis utilizing a high-fidelity finite element building model with consideration of P-Delta effect. A cyclic modal pushover analysis is performed to ascertain the degradation of generalized building stiffness and strength in both translation directions, stemming from the deterioration of steel material in stiffness and strength. Subsequently, a biaxial hysteretic force model is employed to depict the hysteretic relationships between generalized forces and displacements, factoring in degradation and P-Delta effects. The inelastic response of a 60-story steel building subjected to both alongwind and crosswind load excitations is quantified through response history analysis to assess the accuracy of the reduced-order building model and to evaluate the influence of degradation of material strength and pre-yield stiffness and P-Delta effects on various responses.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available June 18, 2026
- 
            Free, publicly-accessible full text available July 22, 2026
- 
            Polaritons are light-matter quasiparticles that govern the optical response of quantum materials at the nanoscale, enabling on-chip communication and local sensing. Here, we report Landau-phonon polaritons (LPPs) in magnetized charge-neutral graphene encapsulated in hexagonal boron nitride (hBN). These quasiparticles emerge from the interaction of Dirac magnetoexciton modes in graphene with the hyperbolic phonon polariton modes in hBN. Using infrared magneto-nanoscopy, we reveal the ability to completely halt the LPP propagation in real space at quantized magnetic fields, defying the conventional optical selection rules. The LPP-based nanoscopy also tells apart two fundamental many-body phenomena: the Fermi velocity renormalization and field-dependent magnetoexciton binding energies. Our results highlight the potential of magnetically tuned Dirac heterostructures for precise nanoscale control and sensing of light-matter interaction.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
